Grundwissen Chemie 8. Klasse NTG

Aufbau und Einteilung von Stoffen

- -Stoffgemisch Reinstoff (einschl. Kenneigenschaften: Siedepunkt, Schmelzpunkt, Dichte; vgl. NuT 5. Kl.)
- -Verbindung Element
- -Bausteine von Reinstoffen: Atome, Moleküle, Ionen
- -Aggregatzustände im Teilchenmodell (vgl. NuT 5. Kl.)

Die chemische Reaktion

- die chemische Reaktion als Umgruppierung von Atomen/Teilchen
- Massenerhaltungssatz
- Ermittlung von Formeln mit Hilfe des PSE
- Aufstellen von Formelgleichungen (als Stoffgleichungen mit Aggregatzuständen einschließlich "aquatisiert" - und Energiebilanz)
- Reaktionsenthalpie; Unterschied zwischen Reaktionsenergie und -enthalpie; exo- und endotherm
- Aktivierungsenergie E_A, Katalysator

Atombau und Periodensystem

- Aufbau des Atoms aus Nukleonen (Protonen, Neutronen) und Elektronen
- Isotope
- Energiestufenmodell der Atomhülle mit Hauptquantenzahlen
- Aufstellen der Elektronenkonfiguration (bezogen auf Hauptenergieniveaus)
- Valenzelektronen
- Ionisierungsenergie

PSE: -Ordnung der Elemente nach steigender Protonenzahl

- -Kurzschreibweise für den Atombau mit Massenzahl = Nukleonenzahl und Ordnungszahl = Kernladungszahl = Elektronenzahl
- -Ermittlung der Atommassen und Molekülmassen
- -Gemeinsamkeit der Elemente einer Periode (gl. Anzahl an Hauptenergieniveaus)
- -Gemeinsamkeit der Elemente einer Gruppe (gl. Anzahl an Valenzelektronen)
- -Abgrenzung Metalle Nichtmetalle (Diagonale)
- -Metalle als Elektronendonatoren (Ausbildung von Kationen), Nichtmetalle als Elektronenakzeptoren (Ausbildung von Anionen); Ermittlung der Ionenladung mit Hilfe des PSE und der Oktettregel

Salze – Ionenbindung

- -Bildung von Salzen aus den Elementen: Metalle als Elektronendonatoren (Ausbildung von Kationen), Nichtmetalle als Elektronenakzeptoren (Ausbildung von Anionen)
- -Teilgleichungen und Gesamtgleichung für die Salzbildung aus den Elementen
- -Modellvorstellung für den Aufbau von Salzen: Aufbau aus Anionen und Kationen im 3-dimensionalen Gitter, Zusammenhalt durch elektrostatische Anziehungskräfte
- -Summenformel als Verhältnisformel
- -Ermittlung der Verhältnisformel anhand der Ionenladungen
- -Erklärung wichtiger Eigenschaften anhand der Modellvorstellung (Sprödigkeit, el. Leitfähigkeit in Lösungen und Schmelzen)
- -Benennung der Element-Ionen, Benennung wichtiger Molekül-Anionen (s. Anhang)

Metalle - Metallbindung

- -Modellvorstellung für Metalle (Aufbau aus positiv geladenen Atomrümpfen, Zusammenhalt durch gemeinsames Elektronengas)
- -Erklärung wichtiger Eigenschaften anhand der Modellvorstellung (el. Leitfähigkeit, Wärmeleitfähigkeit, Verformbarkeit)

Molekulare Stoffe - Atombindung

- -Modellvorstellung: Aufbau von Molekülen aus Nichtmetallatomen, Zusammenhalt der Atome durch gemeinsame = bindende Elektronenpaare
- -Summenformel als Molekülformel
- -Aufstellen von Valenzstrichformeln (Einfach- und Mehrfachbindung, Formalladung, Oktettaufweitung und Ladungstrennung verstehen)

wichtige Reaktionen:

- -Knallgasprobe zum Nachweis von Wasserstoff
- -Glimmspanprobe zum Nachweis von Sauerstoff
- -Kohlenstoffdioxid-Nachweis mit Calciumhydroxid-Lösung/Bariumhydroxid-Lösung)

Wichtige Formeln und ihre Benennung

Nomenklatur mit griechischen Vorsilben: mono-, di-, tri-, tetra-, penta-, hexa-, hepta-, octa-, nona-, deca

Metallkationen: Angabe der theoret. Ionenladung/Wertigkeit hinter dem Elementnamen mit römischen Ziffern (z. B. Eisen(III)-chlorid)

Nichtmetallanionen: Endung -id

F	Fluorid	
Cl	Chlorid	
Br ⁻	Bromid	
I ⁻	Iodid	
O ²⁻	Oxid	
S ²⁻	Sulfid	
N ³⁻	Nitrid	
P ³⁻	Phosphid	

wichtige Verbindungen:

systematischer Name	Trivialname	Formel
	Wasser	H ₂ O
Chlorwasserstofflösung	Salzsäure	HCI
	Kohlenstoffdioxid	CO ₂
Natriumhydroxid-Lösung	Natronlauge	NaOH

Zweiatomige Elemente:

Wasserstoff	H ₂
Sauerstoff	O ₂
Stickstoff	N ₂
Fluor	F ₂
Chlor	Cl ₂
Brom	Br ₂
Iod	I ₂